

Learning Experience Design (LXD) Research \& Consulting
 a division of Charles River Media Group, LLC

95 Phonics Core Program ${ }^{\text {TM }}$ Classroom Kit Grades K-3
Follow Up Efficacy Study with Acadience ${ }^{\circledR}$ Reading K-6: ESSA Level 1
Conducted by Rachel Schechter, Ph.D. and Learning Experience Design (LXD) Research, with statistical support from Lynch Research Associates
November 7, 2022

Introduction

There is a growing concern that core reading curricula for the elementary years have not improved reading scores in the US (The Condition of Education 2020). Reporters such as Emily Hanford (APM Reports) have shined a light specifically on the need for explicit, systematic, and sequential phonics instruction for every child. In response to this identified need, 95 Percent Group, LLC created a new phonics core curriculum that can replace the phonics instructional lessons provided with other core reading curricula (typically the first 20 minutes of the reading block).

The 95 Phonics Core Program (95PCP) is a whole-class, Tier I program designed for students in grades K-3 to address and prevent reading gaps using explicit, structured phonics instruction for 20 minutes per day. Instruction is based on a scope and sequence with 25 lessons for kindergarten and 30 lessons for each of Grades 1-3. The 95 Percent Group hired LXD Research, a third-party independent evaluator, to conduct a research study on the impact of the 95 PCP .

Recognizing the importance of teachers' own experiences navigating this period of change in reading curricula, LXD Research centered teacher feedback in the research design. The treatment teachers' implementation stories, gathered through extensive and immersive interviews, focus groups and classroom observation, suggest that even though it took teachers some time to adjust to using the 95PCP, the teachers saw growth in their students' literacy skills which they attributed to the year of 95PCP lessons. The student assessment data then validated what the teachers observed firsthand in their own classrooms. The data from the initial study (Fall 2021 to Spring 2022) showed the 95PCP had a positive, significant impact on student achievement for all grades (K-2). This study follows up with those students to understand how skills learned during Year 1 impacted beginning of year scores in Year 2.

Research Description

The research study has one primary goal: to examine the impact of the 95PCP on student literacy achievement in Grades K-3. Additional goals of the study are to examine program implementation information and feedback from educators about the program's quality and ease-of-use, as well as their
perceptions about the impact of the 95PCP on teaching and learning. To meet these goals, LXD Research designed a mixed-methods study with a random assignment of participants into conditions at the school level (ESSA Level 1 - Strong). This paper follows up on the first year of implementation with grades K-2.

The recruited research partner is in a large, suburban school district in Missouri. There are over 6,000 students in grades K-3 across 17 elementary schools in the district. The district serves a population in which 23% of students traditionally ${ }^{1}$ qualified for free lunch and between $5-12 \%$ of students per grade are English Language Learners (ELL). LXD Research engaged with the district to conduct a set of qualitative and quantitative data collection activities throughout the school year: Acadience Reading K-6 assessment administration (at the beginning, middle, and end of the year), a teacher survey, interviews with school literacy coaches, and observations of classes.

Research Questions and Methods

Figure 1. Design Description

Sample
 Design
 Analysis

- Schools with similar characteristics were paired
- Schools within each pair were randomly assigned to treatment (adds 95PCP) or control (does not add 95PCP)
- Schools with 95PCP replace ReadyGEN phonics time with 95PCP
- Control schools use ReadyGEN and other "business-as-usual" materials
- Students in all schools assessed with Acadience Reading
- Teacher survey
- Acadience Reading scores analyzed by grade to understand differences between groups
- Advanced statistical modeling accounts for multiple characteristics

Research Questions for Follow-Up Study

- How does the 95PCP affect K-2 student achievement on formative assessments (of phonics, specifically) in schools that implement the program compared to schools that do not implement the program, comparing Fall 2021 to Fall 2022?
- How does the impact of the 95PCP vary by a student's beginning of year (BOY) benchmark status (i.e., do students Below Benchmark at BOY achieve similar growth as students who were At Benchmark at BOY)?

[^0]An advanced statistical modeling analysis was conducted to understand what the data show in support of answering these questions. This analytical technique helps account for known differences that could impact student outcomes.

Figure 2. Levels in Statistical Modeling

Sample Description

A total of 3443 students in grades 1-3 from 16 schools participated in an Randomized Control Trial (RCT) examining the effects of the 95 Percent Group's Phonics Core Program in the Fort Zumwalt school district during the Fall of 2022. Of these students, 1883 were in the treatment group and 1560 were in the control group.
Among the 3403 students who had complete data from the Beginning of Year (BOY) in Fall of 2021, 344 students did not have BOY data available in Fall of 2022, signaling an attrition rate of approximately 10%. This attrition was equally likely to occur in the treatment and control groups $\left(\chi^{2}=0.63, \mathrm{p}=.43\right)$.

Matched BOY Fall 2021 and BOY Fall 2022 Sample

The following analyses include the 2677 students (see Figure 1 for a breakdown of students who were excluded from the initial sample of 3403) who had a Beginning of Year (BOY) assessment for Fall of 2021 and Fall 2022. Students are grouped into 3 grade levels: Rising First Grade (students in Kindergarten during Fall 2021 and currently in First Grade during Fall 2022), Rising Second Grade (students in First Grade during Fall 2021 and currently in Second Grade during Fall 2022), and Rising Third Grade (students in Second Grade during Fall 2021 and currently in Third Grade during Fall 2022). Table 1 describes the number of students in the matched sample by grade level and treatment or control group status.

Figure 3. Matched Fall 2021 and Fall 2022 Student Sample
Matched 21-22 Student Sample

Final Analysis Sample=2677

Table 1. Sample sizes for matched sample by grade level and treatment/control group

			BOY 2021	BOY 2022	Matched Sample
Grade Level	School Group	\# of Schools	\# of Students	\# of Students	\# of Students
Rising 1st	Control	7	516	470	397
	Treatment	7	612	569	466
	Total	14	1128	1039	863
	Control	7	532	478	412
	Treatment	7	577	547	456
	Total	14	1109	1025	868
Rising 3rd	Control	7	535	493	419
	Treatment	7	631	611	527
	Total	14	1166	1104	946

Baseline Results
We employed Chi-Square analyses to compare students in the treatment ($\mathrm{N}=1449$) and control ($\mathrm{N}=1228$) groups in regard to gender, English Language Learner (ELL) and special education status (SPED). Results suggested there were no statistically meaningful differences between the treatment and control groups in regard to gender, ELL, and SPED (see Table 2).

Table 2. Sample descriptives for the treatment and control group for the Matched Sample ($N=2,677$)

Group	Male	SPED	ELL
Control	50%	11%	7%
Treatment	49%	12%	6%

When considering differences between the treatment and control groups by grade level, there were no statistically meaningful differences in regard to gender, SPED or ELL status among Rising 1st grade, Rising 2nd grade or Rising 3rd grade students (see Table 3).

Table 3. Sample descriptives for treatment and control group by grade for the Matched Sample

Grade	Group	Male	SPED	ELL
Rising 1st	Control	52%	8%	8%
	Treatment	48%	7%	5%
	Control	48%	11%	8%
	Treatment	49%	11%	7%
Rising 3rd	Control	52%	14%	6%
	Treatment	50%	17%	5%

Analytic Approach

Three level hierarchical linear regression models (HLMs) with time (level 1) nested within students (level 2) nested with schools (level 3) were employed to examine growth in composite and subscale scores. All models contained a series of covariates including gender ("Gender"; $1=$ male, $0=$ female, ELL status ("ELL"; $1=E L L, 0=$ non-ELL), SPED status ("SPED"; $1=$ SPED, $0=$ non-SPED) an indicator of time ("Time"; $1=$ Beginning of year (BOY) Year 1, $2=$ BOY Year 2), an indicator of whether the student was in the treatment or control group ("group"; $1=$ Control, $2=$ Treatment), and an interaction between time and group calculated as the product of Time*group ("Tigr"). Table 4 lists the outcomes that were assessed within each age group.

We explored main effects of treatment vs control group by considering the significance of the interaction between time and group ("Tigr"). A significant interaction term would suggest that the slope (i.e., growth) in composite scores is different for the treatment versus control groups. We also
looked at growth in composite scores separately based on students' BOY benchmark scores. All analyses were conducted separately by grade using the statistical software package R 4.2.0.

Table 4. List of Assessments by Grade Level

Grade Level	BOY Y1-BOY Y2 Assessments
Rising 1st	Composite scores, LNF
Rising 2nd	Composite scores, CLS, WWR
Rising 3rd	Composite scores, ORF, ERR, RETELL, RETELL QR, ORF accuracy scores

Results for Student Reading Outcomes

After the first year of use, the data show that a positive impact of the 95 Phonics Core Program was measurable for all three grades.

Positive impacts were found for the following Acadience Reading measures:

- Rising First Grade: Composite for students who started below grade level
- Rising Second Grade: Nonsense Word Fluency CLS (Correct Letter Sounds) and Whole Words Read (WWR)
- Rising Third Grade: Composite

Rising First Grade

Because the distribution of the composite and LNF scores were positively skewed within the Rising First grade sample, we elected to use a poisson distribution to examine changes in scores over time. There was not a significant effect of treatment on composite or LNF scores, suggesting that students in the treatment and control group demonstrated similar growth. We looked separately at growth in composite scores among students who were below or well below benchmark at baseline. Among students who were below or well below benchmark at BOY, students in the treatment group demonstrated more growth in composite scores than students in the control group (IRR=1.15, $\mathrm{p}<.001, \mathrm{f}^{2}=.00$; see Figure 1a). Complete output for each model can be found in Appendix 1. Results of t-tests (and their associated effect sizes) comparing growth in composite scores between the treatment and control groups can be found in Appendix 2.

Figure 4. Below or or Well Below benchmark students: Rising First Grade students in the treatment group demonstrated significantly more growth in composite scores than students in the control group

Rising Second Grade

Within the Rising Second Grade sample, there was a significant effect of treatment on CLS scores and WWR scores; students in the treatment group demonstrated more growth in CLS scores than students in the control group ($\mathrm{B}=6.44, \mathrm{p}=.001, \mathrm{f}^{2}=.01$; see Figure 2 a) and students in the treatment group demonstrated more growth in WWR scores than students in the control group $\left(B=2.30, p=.005, f^{2}=.01\right.$; see Figure $\left.2 b\right)$. There were no statistically meaningful differences between treatment and control group in regard to growth in composite scores. There were also no significant findings in regard to benchmark status. That is, students tended to demonstrate similar growth in composite scores regardless of benchmark status. Complete output for each model can be found in Appendix 3.

Figure 5a. Rising Second Grade students in the treatment group demonstrated significantly more growth in CLS scores than students in the control group

Figure 56. Rising Second Grade students in the treatment group demonstrated significantly more growth in WWR scores than students in the control group

Rising Third Grade

Within the Rising Third Grade sample, there was a significant effect of treatment on composite scores $\left(B=10.31, p=.009, f^{2}=.01\right.$; see Figure 3a). Students in the treatment group demonstrated more growth in composite scores than students in the control group. There were also no significant findings in regard to benchmark status. That is, students tended to demonstrate similar growth in composite scores regardless of benchmark status. There were no statistically meaningful differences between treatment and control group in regard to growth in ORF, ERR, RETELL, RETELL QR, and ORF Accuracy scores. Complete output for each model can be found in Appendix 4.

Figure 6. Rising Third Grade students in the treatment group demonstrated significantly more growth in composite scores than students in the control group

Conclusion

Over the course of the first year, teachers shared that the change to a new educational program was challenging. To change the way a school teaches reading by using structured phonics can be overwhelming for teachers and learners. The research team heard exactly that from the teachers in the treatment group in this study as the teachers worked to simultaneously learn the content and cadence of 95PCP and teach its lessons, but this was only half of the story. The initial struggle to learn a new way of teaching early literacy was overshadowed by their students' reading growth and the sense, expressed by the comparison group teachers, that 95PCP met an urgent need in their curricular toolbox. 95PCP facilitated alignment between their own burgeoning knowledge of the science of reading (SOR) and their teaching tools.

Educators from this district continued to share stories with the research team after the first year of the study ended. They said that it was clear during summer school which students had received the 95PCP and which students had not. At the start of the year, teachers shared that they had never seen their students so prepared for the start of school. The student assessment data validated what the teachers observed firsthand in their own classrooms. The data show the first year of the 95PCP had a positive, significant impact on student achievement that extended past the summer and into the new school year. There were no noticeable differences in how the program impacted students from different subgroups. For rising first graders, even students who started Below Benchmark continued to see an extra boost in growth from this core supplemental program (that lasted over the summer).

- Rising first graders in the treatment group demonstrated significantly more growth in Composite scores than students in the control group when grouped by BOY Benchmark Status.
- Rising second graders in the treatment group demonstrated more growth in CLS and WWR scores than students in the control group.
- Rising third graders in the treatment group demonstrated significantly more growth in Composite scores than students in the control group.

This is the first of multiple inquiries on how the initial gains of the product sustain and build over multiple years of use. Additionally, new research questions may explore the extent to which teachers' growing knowledge of phonics, whether that be gained through a Science of Reading program such as LETRS or independent study, affects teachers' implementation and fidelity to the use of 95PCP will be incorporated into the year 2 study in future reports. Finally, additional studies that examine the use of a core supplemental program in combination with a high-quality, structured Tier 2 and/or Tier 3 intervention program could support acceleration and growth for all students.

Appendices

Appendix 1: Rising First Grade Results

- Composite score: (IRR=0.99, $\mathrm{p}=.67$) - no significant differences between treatment and control group
- LNF score: (IRR=0.97, $\mathrm{p}=.12$) - no significant differences between treatment and control group

For below or well below students:

- Composite score: (IRR=1.15, $\mathrm{p}<.001$) - significant differences between treatment and control group

Predictors	comp 1		
	Incidence Rate Ratios	CI	p
(Intercept)	8.97	7.53-10.68	<0.001
Time	3.57	3.42-3.72	<0.001
y2female	0.97	0.92-1.03	0.348
y2SPED	0.52	0.46-0.58	<0.001
y2ELL	0.73	0.64-0.82	<0.001
y2group	1.05	0.94-1.17	0.370
y 2 Tigr	0.99	0.97-1.02	0.673
Random Effects			
σ^{2}	0.01		
τ_{00} student_id.y 2 school_name	0.19		
$\tau_{00} \mathrm{y} 2$ school_name	0.01		
ICC	0.93		
$\mathrm{N}_{\text {student_id }}$	863		
$\mathrm{N}_{\mathrm{y} 2 \text { school_name }}$	14		
Observations	1725		
Marginal R^{2} / Conditional R^{2}	0.680/0.978		

Below or Well Below Benchmark Comparisons

The variable of interest is "Tigr," which represents the interaction between "Time" and "Group" and tells us whether growth in the outcome is different for students in the control versus treatment groups.

	comp 1		
Predictors	Incidence Rate Ratios	$C I$	p
(Intercept)	1.85	$1.41-2.43$	<0.001
Time	7.08	$6.38-7.85$	<0.001
y2female	0.99	$0.89-1.09$	0.826
y2SPED	0.54	$0.46-0.63$	<0.001
y2ELL	0.74	$0.63-0.88$	$\mathbf{0 . 0 0 1}$
y2group	0.79	$0.67-0.93$	$\mathbf{0 . 0 0 6}$
y2Tigr	1.15	$1.07-1.22$	<0.001

Random Effects

σ^{2}	0.02
$\tau_{00 \text { student_id:y2school_name }}$	0.21
$\tau_{00 \text { y2school_name }}$	0.00
ICC	0.91
$\mathrm{~N}_{\text {student_id }}$	358
$\mathrm{~N}_{\mathrm{y} 2 \text { school_name }}$	14

Observations 715
Marginal R^{2} / Conditional $\mathrm{R}^{2} \quad 0.839 / 0.986$

Predictors	$\operatorname{lnf} 1$		
	Incidence Rate Ratios	CI	p
(Intercept)	9.12	7.55-11.01	<0.001
Time	2.15	2.03-2.28	<0.001
y2female	0.96	0.90-1.01	0.135
y 2 SPED	0.64	0.57-0.72	<0.001
y2ELL	0.75	0.66-0.85	<0.001
y2group	1.08	0.96-1.21	0.205
y 2 Tigr	0.97	0.94-1.01	0.117
Random Effects			
σ^{2}	0.03		
τ_{00} student_id.y 2 school_name	0.18		
τ_{00} y2school_name	0.01		
ICC	0.85		
$\mathrm{N}_{\text {student_id }}$	863		
$\mathrm{N}_{\mathrm{y} 2 \text { school_name }}$	14		
Observations	1726		
Marginal R^{2} / Conditional R^{2}	0.409 / 0.911		

Appendix 2: Effect Sizes Based on t-tests

In the table below we report effect sizes (Cohen's d) resulting from dependent samples t -test that compared growth in composite scores in the treatment and control groups. T-tests were run separately for Rising 1st, Rising 2nd and Rising 3rd grade students.

Grade	Condition	Number of students	Average difference in Composite between Fall 2021 and Fall 2022	SD	Significance	Effect Size Cohen's d
	Control	396	84.77	36.37	$\mathrm{p}=.11$	0.11
	Treatment	466	88.64	34.94		0.12
Rising 2nd	Control	412	75.31	64.41	$\mathrm{p}=.07$	
	Treatment	456	83.46	67.22		0.17
Rising 3rd	Control	419	92.05	58.00	$\mathrm{p}=.010$	
	Treatment	525	102.26	62.03		

Appendix 3: Rising Second Grade Results

- Composite score: $(\mathrm{B}=8.15, \mathrm{p}=.07)$ - no significant differences between treatment and control group
- CLS score: $(\mathrm{B}=6.44, \mathrm{p}=.001)$ - significant differences between treatment and control group
- WWR score: $(\mathrm{B}=2.30, \mathrm{p}=.005)$ - significant differences between treatment and control group

For below or well below students:

- Composite score: $(\mathrm{B}=10.78, \mathrm{p}=.07)$ - no significant differences between treatment and control group

Composite Score

	comp 2		
Predictors	Estimates	$C I$	p
Intercept)	50.69	$22.67-78.71$	<0.001
Time	67.16	$53.06-81.27$	<0.001
y2female	-10.65	$-17.83--3.48$	0.004
y2SPED	-60.99	$-72.63--49.36$	<0.001
y2ELL	-26.55	$-40.29--12.80$	<0.001
y2group	-7.23	$-24.54-10.08$	0.413
y2Tigr	8.15	$-0.64-16.94$	0.069

Random Effects

σ^{2}	2171.88
$\tau_{00 \text { student_id:y2school_name }}$	1731.63
τ_{00} y2school_name	67.28
ICC	0.45
$\mathrm{~N}_{\text {student_id }}$	868
$\mathrm{~N}_{\text {y2school_name }}$	14
Observations	1736
Marginal $\mathrm{R}^{2} /$ Conditional R^{2}	$0.334 / 0.636$

Below or Well Below Benchmark Comparisons

The variable of interest is "Tigr," which represents the interaction between "Time" and "Group" and tells us whether growth in the outcome is different for students in the control versus treatment groups.

	comp 2		
Predictors	Estimates	$C I$	p
(Intercept)	40.84	$6.46-75.22$	$\mathbf{0 . 0 2 0}$
Time	53.20	$34.17-72.23$	<0.001
y2female	-4.76	$-12.27-2.76$	0.215
y2SPED	-54.96	$-65.85--44.07$	<0.001
y2ELL	-18.16	$-31.25--5.07$	$\mathbf{0 . 0 0 7}$
y2group	-10.62	$-31.77-10.53$	0.325
y2Tigr	10.78	$-1.02-22.58$	0.073

Random Effects

τ_{00} student_id:y2school_name
τ_{00} y2school_name
ICC
$\mathrm{N}_{\text {student_id }}$
$\mathrm{N}_{\mathrm{y} 2 \text { school_name }} \quad 14$

	cls 2		
Predictors	Estimates	$C I$	p
Intercept)	11.28	$-1.09-23.64$	0.074
Time	26.23	$19.98-32.48$	<0.001
y2female	-8.00	$-11.35--4.65$	<0.001
y2SPED	-22.02	$-27.46--16.58$	<0.001
y2ELL	-6.40	$-12.83-0.02$	0.051
y2group	-6.00	$-13.62-1.63$	0.123
y2Tigr	6.44	$2.55-10.33$	$\mathbf{0 . 0 0 1}$

Random Effects

σ^{2}	426.79
τ_{00} student_id:y2school_name	402.74
τ_{00} y2school_name	11.53
ICC	0.49
$\mathrm{~N}_{\text {student_id }}$	868
$\mathrm{~N}_{\mathrm{y} 2 \text { school_name }}$	14

Observations 1736

Marginal $R^{2} /$ Conditional $R^{2} \quad 0.316 / 0.653$

	wwr 2		
Predictors	Estimates	$C I$	p
Intercept)	-4.28	$-9.36-0.81$	0.099
Time	10.81	$8.25-13.37$	<0.001
y2female	-2.80	$-4.03--1.56$	<0.001
y2SPED	-6.96	$-8.96--4.96$	<0.001
y2ELL	-2.68	$-5.04--0.31$	$\mathbf{0 . 0 2 6}$
y2group	-1.73	$-4.88-1.41$	0.280
y2Tigr	2.30	$0.70-3.89$	$\mathbf{0 . 0 0 5}$

Random Effects

σ^{2}	71.74
τ_{00} student_id.y2school_name	47.30
τ_{00} y2school_name	2.39
ICC	0.41
$\mathrm{~N}_{\text {student_id }}$	868
$\mathrm{~N}_{\text {y2school_name }}$	14
Observations	1736
Marginal $\mathrm{R}^{2} /$ Conditional R^{2}	$0.325 / 0.601$

Appendix 4: Rising Third Grade Results

- Composite score: $(\mathrm{B}=10.31, \mathrm{p}=.009)$ - significant differences between treatment and control group
- ORF score: $(\mathrm{B}=0.97, \mathrm{p}=.45)$ - no significant differences between treatment and control group
- ERR score: (IRR=0.92, $\mathrm{p}=.06$) - no significant differences between treatment and control group
- RETELL score: $(\mathrm{B}=-1.24, \mathrm{p}=.21)$ - no significant differences between treatment and control group
- RETELL QR score: $(\mathrm{B}=0.06, \mathrm{p}=.41)$ - no significant differences between treatment and control group
- ORF Accuracy score: $(\mathrm{B}=-0.74, \mathrm{p}=0.46)$ - no significant differences between treatment and control group

For below or well below students:

- Composite score: $(\mathrm{B}=10.97, \mathrm{p}=.18)$ - no significant differences between treatment and control group

Composite Score

	comp 3		
Predictors	Estimates	$C I$	p
(Intercept)	107.91	$74.20-141.62$	<0.001
Time	81.74	$69.09-94.39$	<0.001
y2female	-14.41	$-24.89--3.92$	0.007
y2SPED	-95.76	$-110.30--81.23$	<0.001
y2ELL	-35.59	$-58.73--12.45$	$\mathbf{0 . 0 0 3}$
y2group	-4.61	$-25.21-15.99$	0.661
y2Tigr	10.31	$2.56-18.05$	$\mathbf{0 . 0 0 9}$

Random Effects

σ^{2}	1816.57
τ_{00} student_id.y2school_name	5680.98
τ_{00} y2school_name	160.40
ICC	0.76
$\mathrm{~N}_{\text {student_id }}$	946
$\mathrm{~N}_{\mathrm{y} 2 \text { school_name }}$	14
Observations	1890

Marginal R^{2} / Conditional $R^{2} \quad 0.324 / 0.840$

Below or Well Below Benchmark Comparisons

The variable of interest is "Tigr," which represents the interaction between "Time" and "Group" and tells us whether growth in the outcome is different for students in the control versus treatment groups.

	comp 3		
Predictors	Estimates	$C I$	p
(Intercept)	51.46	$0.06-102.86$	0.050
Time	67.94	$42.12-93.77$	<0.001
y2female	-15.97	$-29.65--2.30$	$\mathbf{0 . 0 2 2}$
y2SPED	-82.67	$-97.35--67.98$	<0.001
y2ELL	-21.33	$-45.76-3.10$	0.087
y2group	-14.28	$-45.71-17.15$	0.373
y2Tigr	10.97	$-5.04-26.98$	0.179

Random Effects

σ^{2}
2252.33
τ_{00} student_id.y2school_name 1989.04
τ_{00} y 2 school_name
195.10

ICC
0.49
$\mathrm{N}_{\text {student_id }}$
274
$\mathrm{N}_{\mathrm{y} 2 \text { school_name }} \quad 14$
Observations
546
Marginal R ${ }^{2} /$ Conditional R ${ }^{2} \quad 0.423 / 0.707$

ORF Scores

	orf 3		
Predictors	Estimates	$C I$	p
(Intercept)	48.36	$36.64-60.07$	$<\mathbf{0 . 0 0 1}$
Time	21.62	$17.46-25.77$	$<\mathbf{0 . 0 0 1}$
y2female	-4.96	$-9.16--0.77$	$\mathbf{0 . 0 2 0}$
y2SPED	-30.62	$-36.42--24.82$	$<\mathbf{0 . 0 0 1}$
y2ELL	-10.33	$-19.57-1.10$	$\mathbf{0 . 0 2 8}$
y2group	1.74	$-5.37-8.85$	0.631
y2Tigr	0.97	$-1.57-3.52$	0.454

Random Effects

σ^{2}	196.34
τ_{00} student_id:y2school_name	956.39
τ_{00} y 2 school_name	16.37
ICC	0.83
$\mathrm{~N}_{\text {student_id }}$	946
$\mathrm{~N}_{\text {y2school_name }}$	14
Observations	1892
Marginal R^{2} / Conditional R^{2}	$0.183 / 0.863$

ERR Scores

	err 3			
Predictors	Incidence Rate Ratios	$C I$	p	
(Intercept)	3.17	$2.40-4.19$	<0.001	
Time	1.05	$0.91-1.21$	0.510	
y2female	1.08	$0.99-1.18$	0.086	
y2SPED	1.45	$1.28-1.63$	<0.001	
y2ELL	1.21	$1.00-1.47$	0.052	
y2group	1.03	$0.87-1.22$	0.692	
y2Tigr	0.92	$0.84-1.00$	0.064	

Random Effects

σ^{2}	0.27
τ_{00} student_id:y2school_name	0.33
τ_{00} y2school_name	0.00
ICC	0.55
$\mathrm{~N}_{\text {student_id }}$	946
$\mathrm{~N}_{\text {y2school_name }}$	14
Observations	1892

Marginal R^{2} / Conditional $\mathrm{R}^{2} \quad 0.038 / 0.569$

	retell 3		
Predictors	Estimates	$C I$	p
Intercept)	11.02	$4.54-17.50$	0.001
Time	10.54	$7.41-13.66$	<0.001
y2female	0.79	$-0.87-2.45$	0.352
y2SPED	-12.19	$-14.51--9.87$	<0.001
y2ELL	-7.08	$-10.78--3.39$	<0.001
y2group	3.16	$-0.81-7.13$	0.119
y2Tigr	-1.24	$-3.15-0.68$	0.205

Random Effects

σ^{2}	109.65
τ_{00} student_id:y2school_name	108.87
τ_{00} y2school_name	4.30
ICC	0.51
$\mathrm{~N}_{\text {student_id }}$	945
$\mathrm{~N}_{\text {y2school_name }}$	14
Observations	1872
Marginal R^{2} /Conditional R^{2}	$0.157 / 0.585$

RETELL QR Scores

retellqr 3

Predictors	Estimates	$C I$	p
(Intercept)	1.89	$1.42-2.36$	<0.001
Time	0.12	$-0.11-0.35$	0.310
y2female	0.02	$-0.08-0.12$	0.745
y2SPED	-0.54	$-0.69--0.39$	<0.001
y2ELL	-0.29	$-0.52--0.05$	$\mathbf{0 . 0 1 6}$
y2group	0.02	$-0.27-0.31$	0.890
y2Tigr	0.06	$-0.08-0.20$	0.413

Random Effects

σ^{2}
0.56
τ_{00} student_id:y 2 school_name
0.30
τ_{00} y 2 school_name
0.02
ICC
0.36
$\mathrm{N}_{\text {student_id }}$
925
$\mathrm{N}_{\mathrm{y} 2 \text { school_name }}$
14

Observations 1777
Marginal $\mathrm{R}^{2} /$ Conditional $\mathrm{R}^{2} \quad 0.052 / 0.397$

ORF Accuracy scores

	acc 3		
Predictors	Estimates	$C I$	p
(Intercept)	82.74	$76.02-89.47$	<0.001
Time	7.10	$3.92-10.29$	<0.001
y2female	-3.46	$-5.36--1.55$	<0.001
y2SPED	-23.00	$-25.63--20.36$	<0.001
y2ELL	-8.68	$-12.88--4.49$	<0.001
y2group	2.61	$-1.49-6.71$	0.212
y2Tigr	-0.74	$-2.69-1.21$	0.457

Random Effects

σ^{2}	115.40
τ_{00} student_id:y2school_name	159.69
τ_{00} y2school_name	4.13
ICC	0.59
$\mathrm{~N}_{\text {student_id }}$	946
$\mathrm{~N}_{\mathrm{y} 2 \text { school_name }}$	14
Observations	1892
Marginal $\mathrm{R}^{2} /$ Conditional R^{2}	$0.225 / 0.680$

[^0]: ${ }^{1}$ As of Fall 2020, all students receive free lunch, so documentation on free-lunch status is not available at the student level.

